Spatial distribution of isoprene emissions from North America derived from OMI formaldehyde column measurements

Dylan Millet (millet@eps.harvard.edu)

Harvard University

<u>with</u>

D.J. Jacob, K.F. Boersma and T.-M. Fu (*Harvard*),

T.P. Kurosu and K. Chance (Harvard-Smithsonian),

C.L. Heald (UC Berkeley), and A. Guenther (NCAR)

thanks to

INTEX Science Teams

Aura Science Team Meeting October 5, 2007

Isoprene: The Most Important Non-Methane VOC

Isoprene

Global emissions ~ methane (but > 10⁴ times more reactive)

~ 6x anthropogenic VOC emissions

Produced enzymatically in plant chloroplasts

Relating HCHO Columns to Isoprene Emission

Palmer et al., JGR (2003,2006) Millet et al., JGR (2006)

Local
$$\Omega_{\text{HCHO}}$$
- E_i Relationship
$$\Omega_{\text{HCHO}} = \frac{1}{k_{\text{HCHO}}} \sum_{i} Y_i E_i$$

$$\downarrow$$

$$\Omega_{\text{HCHO}} = S \cdot E_{isoprene} + B$$

Relating HCHO Columns to Isoprene Emission

What drives variability in column HCHO?

Isoprene dominant source when Ω_{HCHO} is high

Other VOCs give rise to a relatively stable background Ω_{HCHO} \rightarrow Not to variability detectable from space

 Ω_{HCHO} variability over N. America driven by isoprene

Millet et al., JGR (2006).

OMI vs. GOME

Updated OMI HCHO within 2-14% of GOME over US (after accounting for interannual climate differences)

Relating HCHO Columns to Isoprene Emissions

Model of Emissions of Gases and Aerosols from Nature

Guenther et al., ACP (2006)

Drive MEGAN with 2 Land Cover Databases

MDVD2 (MODIS/AVHRR/Ground truth) CLM (AVHRR/IGBP DISCover)

[%]

Plant Functional Type Coverage

MDVD2 **CLM** deciduous Broadleaf trees evergreen Fineleaf trees deciduous Fineleaf trees Shrubs Grasses Crops

33

66

Isoprene Emission

June-August 2006

OMI Isoprene Emission vs. MEGAN-CLM

Spatial Patterns in Isoprene Emissions

MEGAN higher than OMI over dominant emission regions

Large sensitivity to surface database used

Bottom-Up Emissions Too High in Dominant Source Regions

MEGAN w/ MDVD2 Land Cover

MEGAN w/ CLM Land Cover

MEGAN emissions >70% too high over much of the Ozark Plateau, Upper South, Upper Midwest

Large regional emissions driven by oak tree cover, high temperatures

Broadleaf tree isoprene emissions overestimated

MDVD2 Broadleaf Trees

CLM-Driven Emissions Too Low in Deep South

Bias in modeled emissions: >100%

OMI – MEGAN Isoprene Emissions June-August, 2006

0.17

-0.17

-0.50

[10¹³ atomsC cm⁻² s⁻¹]

Underestimate of broadleaf tree coverage in understory

-or-

Modeled emissions from evergreen trees or crops too low

Constraints on Emission Factors

Regress OMI isoprene emissions against MDVD2 PFTs

Constant EFs

More consistent with OMI

Optimum broadleaf tree EF:

- 13 x 10¹² atomsC/cm²/s
- similar to MEGAN mean
- rejects MEGAN's use of 3-4x higher
 EFs in certain locations

Possible explanation for OMI-MEGAN discrepancy: Fast chemical loss within forest canopies?

Extra Slides

Mapping Isoprene Emissions from Space

Formaldehyde (HCHO) is a major breakdown product in the oxidation of isoprene

→ Giving us an isoprene emission proxy that can be measured from space

Can we derive top-down constraints from satellites to test the bottom-up inventories?

HCHO Column Distribution over North America

INTEX-A aircraft experiment summer 2004

Millet et al., JGR (2006).

GEOS-Chem Global 3D Model of Atmospheric Chemistry

GEOS-4 assimilated meteorological data from the NASA Goddard Earth Observing System

winds, convective mass fluxes, mixing depths, temperature, precipitation, surface properties 6-hour temporal resolution (3-hour for surface variables and mixing depths)

1° × 1.25° horizontal resolution (degraded to 2x2.5 for input to GEOS-Chem)

55 vertical layers

advection every 15 minutes using a flux-form semi-Langrangian method (Lin and Rood, 1996)

Emissions

anthropogenic (EPA NEI99, BRAVO, EDGAR, EMEP, Streets) biogenic (MEGAN, Jacob 2002 & 2005, Yienger and Levy 1995) biomass burning (GFED2) & biofuel

Ozone-NOx-VOC chemistry coupled to aerosols

Dry deposition

standard resistance-in-series scheme (Wesely, 1989)

Wet deposition

convective scavenging, rainout (in-cloud), washout (below-cloud) (Liu, 2001)

Aerosol chemistry and radiative effects

Testing HCHO Column Measurements From Space

Chemical transport modeling

GEOS-Chem global 3D model of atmospheric chemistry

Driven by assimilated meteorology

Source of external information in HCHO retrieval

HCHO vertical distribution well simulated

Testing HCHO Column Measurements From Space

$$\frac{\Omega_{slant}}{\Omega_{vertical}} = f$$
 (atmospheric scattering, HCHO vertical profile, surface albedo)

Clouds: primary source of error

1σ error in HCHO satellite measurements: 25–31%

Recommended cloud cutoff: 50%

Testing HCHO Column Measurements From Space

2006 Aircraft Campaigns

INTEX-B MILAGRO TEXAQS-2006

OMI vs. Aircraft Data & GEOS-Chem

HCHO Columns [10¹⁵ molecules cm⁻²]

Aircraft measurements by A. Fried

Limited direct validation data shows consistency between aircraft measurements and OMI

Relating HCHO Columns to Isoprene Emission

Testing the Modeled Ω_{HCHO} - $E_{isoprene}$ Slope

$$\Omega_{\mathsf{HCHO}} = S \cdot E_{isoprene} + B$$

HCHO yield from isoprene

From aircraft profiles during INTEX-A:

HCHO yield from isoprene = 1.6 ± 0.5

Consistent with current chemical mechanisms

Millet et al., JGR (2006).

OMI vs. GEOS-Chem with MEGAN Emissions

Diel Cycle in Isoprene and HCHO Columns over SE US

Defining Spatial Distribution of E_{isoprene} Using OMI HCHO

test bottom-up inventories against topdown constraints from OMI

mismatch in hotspot locations

implications for OH, O₃, SOA production